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ABSTRACT

High surface temperatures and temperature gradients can affect the vibratory characteristics and sta-

bility of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods

to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis

codes that predict these thermal effects must be correlated and verified with experimental data. This paper

presents experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuni-

form, and transient heating conditions. These data are compared with vibration analysis results for the

same heating conditions. The data show the effect of heat on each plate's modal characteristics, a compar-

ison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect

of modeling material property changes and thermal stresses on the accuracy of the analytical results at non-

uniform and transient heating conditions.

NOMENCLATURE

DFRF

FEM

NASP

STARS

Dryden Flight Research Facility, Edwards, CA

finite-element model

National Aero-Space Plane

STructural Analysis RoutineS

INTRODUCTION

Aircraft that fly at hypersonic speeds will be subjected to high surface temperatures and large temper-

ature gradients. These conditions will affect the modal characteristics of the structure and can seriously

affect the aeroelastic and aeroservoelastic stability of the vehicle. If finite-element model (FEM) analysis

methods are to be relied upon to predict these instabilities, accurate determination of the effect of heat on
the modal characteristics of these structures is vital.

In the late 1950's and early 1960's, the effect of heat on the modal characteristics of structures was in-

vestigated for simple panels [1] and on a prototype wing for the X-15 vehicle [2]. Results indicated that

thermal stresses generated from heating the structure could have significant effects on structural stiffness

in addition to the material property changes.

There is renewed interest in vibration testing of heated structures with the National Aero-Space Plane

(NASP) program [3] and other hypersonic research programs. Design and flight test considerations dictate

that analysis methods be accurate enough to predict the structural stability of the vehicle when it is sub-

jected to high temperatures. Confidence in analytical results can only come through correlation and veri-
fication with experimental data.

A series of heated structure vibration tests have been conducted on aluminum, titanium, and fiberglass

plates at the Dryden Flight Research Facility (DFRF). Modal data were acquired from these plates heated

at uniform, nonuniform, and transient temperature profiles. A corresponding vibration analysis of each

plate using finite element models was accomplished to correlate with this set of experimental data. This

paper presents experimental modal data which show the effect of heat on the modal characteristics of each

plate, and analytical vibration results which show the effect of modeling the structural material property



changes,andthethermalstresseson theaccuracyof theresultsfor nonuniformandtransientheatingpro-
files.

TEST ARTICLES

Four plates were selected as test articles. Each article was 30.5 cm (12 in.) high and 127 cm (50 in.)

long. Plates of three different materials were tested. The materials were 2024 aluminum (0.48 cm (0.19-

in. thickness)), A 110 titanium (0.51 cm (0.20-in. thickness)), and fiberglass.

Two fiberglass plates were manufactured using a wet lay-up method. The first plate (#1) was 0.38 cm

(0.15 in.) thick, and had a total of 24 plies (0_45,90)3s. The second plate (#2) was 0.48 cm (0.19 in.)

thick, and also had 24 plies (0+30,+60,90)2s- Plates with different plies were selected to determine the

effect of ply orientation on the change of modal characteristics at elevated temperatures. Each plate was

manufactured using Shell EPON DPL 863 resin, Shell EPON curing agent W, and HEXEL style 7715

unidirectional fabric. This fabric is 90-percent unidirectional E-glass. Each plate was post cured at 191

°C (375 °F) for 2.5 hr. The laminate was quasi-isotropic to minimize thermal stresses.

The length of each plate was divided into three equal length zones for instrumentation and heating

purposes as shown in Figure 1. Each plate was instrumented with 18 accelerometers and 30 thermocou-

pies. Each plate zone contained six accelerometers and nine thermocouples on the front of the plate. The

rear side of the plate had one thermocouple in the center of each zone to measure the temperature gradient

across the thickness of the plate. The maximum operating temperature of the thermocouples was 1149 °C

(2100 °F).

Most lightweight accelerometers do not function above 260 °C (500 °F). Therefore, at test tempera-
tures above 260 °C, the test article structural response was measured with a single point staring laser vi-

brometer.

The mass and stiffness effect of the thermocouple and accelerometer wires on each test article was

considered to be negligible. The weight of the wires did not rest directly on the surface of the test article

and the wires were fairly flexible. Test data verified this assumption to be correct.

TEST SETUP

The overall setup of the experimental equipment required to measure each plate's modal characteris-

tics is shown in Figure 2. This schematic shows the interconnection of the oven, the test article heater

control, the thermocouple data acquisition equipment and the accelerometer-laser vibrometer data acqui-

sition equipment. This system provided closed-loop temperature control of the plate, and display and stor-

age of the thermocouple and plate frequency response data. A detailed description of the experimental

equipment used, including oven construction, remote satellite, and modal analysis computer functions is

given in refs. [4-6].

Each plate was supported in the oven by a combination of bungee cord and steel cables (fig. 1) to pro-
vide a free-free boundary condition. The portion of the suspension cables that were inside the oven were

made of steel to withstand the heat. The steel cable was kept as short as possible to avoid affecting the

plate's modal characteristics. See Reference 5 for a more detailed description of the test article support

system.



A free-freeboundaryconditionwasselectedto minimizethecomplexityof thetestsetup.This typeof
boundaryconditionalleviatedtheuncertaintiesassociatedwith effectsof heatconductionandthermally-
inducedstressesatthemountingframeinterface.Correlationof experimentaldatawith analyticalpredic-
tionsis moreaccuratelyaccomplishedwith theseeffectsremoved.

TEST TECHNIQUE

Excitation

Impact excitation was used to excite the plate by striking a rod, which was attached to the plate and

extended through an opening in the oven, with a hammer calibrated to measure input force. Impact exci-

tation provided a way to excite the plate in the shortest amount of time, which was essential during tran-

sient heating of the plate.

Heating Profiles

The plate was subjected to three heating profiles; uniform, nonuniform, and transient. Uniform heating

of each plate was done by heating each zone of the plate to the same temperature. The thermocouple read-

ings were monitored to ensure that the plate was uniformly heated.

The aluminum plate was uniformly heated at 93, 149, 177,204, and 246 °C (200, 300, 350, 400, and

475 °F). The titanium plate was uniformly heated to 93, 149, 204, 260, 316, and 371 °C (200, 300, 400,

500, 600, and 700 °F). The fiberglass plates were uniformly heated to 66, 93, 121,149, and 177 °C (150,

200, 250, 300, and 350 °F).

Nonuniform heating of each plate consisted of heating the plate's three zones to a different tempera-

ture. Each plate was uniformly heated until the lowest target temperature of a particular zone was reached.

The oven then tried to maintain the temperature of that zone while heating the two remaining zones to the

next highest target temperature. Once the target temperature of the second zone was reached, the oven

heated the remaining zone, while attempting to maintain the temperatures of the two other zones. Data

were acquired when the final zone was heated to its maximum target temperature. The average temperature

profile along the length of each test article that was nonuniformly heated is shown in Figure 3.

Transient plate heating was conducted by heating an end zone of the plate. The zone was heated at a

specified rate up to the desired maximum temperature. The maximum heating rate available was 3.9 °C/

sec (7 °F/sec). The plate was continually excited while it was heated and each plate time history response

was stored directly to the modal analysis system disk. The modal characteristics for each plate were deter-

mined from the data acquired at the maximum temperature condition of the heated zone. The average tem-

perature profile along the length of each test article for transient heating is shown in Figure 3.

EXPERIMENTAL DATA ANALYSIS METHOD

Once data acquisition was completed for a given heating profile, frequency and damping values for the

first four modes were estimated. These modes were first plate bending (mode 1), first plate torsion (mode

2), second plate bending (mode 3), and second plate torsion (mode 4). The technique used operated on a

single frequency response function. The frequency response function at the plate corner was selected



becauseit containedthebestresponseof the first four modes. Only the first four modes were selected

because the number of accelerometers was insufficient to determine mode shapes above this number. The

modal parameter estimates were obtained by fitting a second-order polynomial to each frequency peak in

the selected frequency response function [7].

Mode shapes were generated using a single-degree-of-freedom technique. This technique extracted

amplitude and phase information from each plate frequency response function at the specified modal fre-

quency. The information was then used for viewing animated mode shapes and static deformation plots.

VIBRATION ANALYSIS

The analytical predictions were done using the STructural Analysis RoutineS (STARS) program [8].

This program used finite-element modeling to determine the change in vibration frequency caused by var-

ious temperature profiles. The temperature profiles were obtained from the thermocouple data acquired

during heating tests.

A finite-element representation of each plate was created using 300 triangular elements and 182 node

points. Each node point had six degrees of freedom (free-free boundary conditions) which resulted in a
model with a total of 1092 degrees of freedom. Each accelerometer on the plate was modeled as a con-

centrated mass. Each plate, including the fiberglass plates, was assumed to be an isotropic material.

The material property of each plate was modeled for each temperature profile. For uniform heat, the

modulus of elasticity value at each temperature was determined either from a materials handbook [9] or

experimentally [ 10]. For nonuniform and transient temperature profiles, the plate temperature distribution

was determined from the thermocouple data. The length of the plate was divided into 25 strips to represent

the temperature distribution in the FEM. The average temperature of each strip was used to determine the

value of the elastic modulus to be used for each strip. A typical temperature profile and the division of

the plate into strips is shown in Figure 4.

The thermal stresses caused by temperature gradients along the length of the plate were modeled in a

similar manner as the material property. The average temperature of each strip was used to specify a delta

temperature above room temperature. The internal forces were then calculated along each element edge

by taking into account the effect of temperature and thermal expansion [ 11].

RESULTS AND DISCUSSION

Multiple heating tests were conducted on each plate except the titanium plate. No significant differ-

ences in the modal data were found between repeated test results. Repeatability of experimental test

results was typically within 2 percent or less. The data presented in the following section were acquired

on one test run and are not averaged values.

Mode shapes are not presented in this paper. The mode shapes were determined for the first four

modes for uniform, nonuniform, and transient heating profiles. It was found from the aluminum and fi-

berglass plate data that the mode shapes did not change due to the effects of heating. These results are

reported in Reference 5.
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Thetitaniumplatedatawereacquiredwith a laservibrometersincetesttemperatureswereabove260
°C (500°F).A comerof theplatewasselectedasthemeasurementpoint becauseit containedthebestre-
sponsefor thefirst four modes.Modeshapeswerethereforenotdeterminedfor thetitanium plate.

Aluminum Plate

Uniform Heating. Figure 5 shows a comparison of analytical and experimental frequencies for the alu-

minum plate heated at uniform temperatures to 246 °C (475 °F). The trend shown by the data was that fre-

quency decreased as the temperature increased. The average decrease in experimental frequency from

room temperature to 246 °C was 7 percent for each mode. The frequency change was solely a function of

changes in the material properties. The modulus of elasticity decreased as temperature increased, causing

a reduction in plate stiffness.

In general, there was good agreement between the predicted and measured values of frequency for each

mode. However, the data showed that for temperatures greater than 171 °C (340 °F), the analysis predicted

greater rates of frequency change as a function of temperature than were actually measured. This discrep-

ancy occurred in a temperature range where the handbook modulus does not vary linearly with tempera-

ture. It is possible that material property variations may be affecting the accuracy of the comparisons.

Figure 6 shows the experimental modal damping estimates as a function of temperature. The trends

were fairly fiat for temperatures to 149 °C (300 °F). Above 149 °C, the damping trend for each mode in-

creased with an increase in temperature. This was a result of the plate becoming more viscous as it was

heated above 149 °C. The increase in viscosity allowed the plate to dissipate more energy which caused

an increase in modal damping as the plate temperature increased.

Nonuniform Heating. Figure 7 compares analytical and experimental percent frequency change from

room temperature for a nonuniform heating profile. The experimental data were acquired from a test which

consisted of heating the plate to 38, 93, and 204 °C (100, 200, and 400 °F) in zones 1, 2, and 3, respectively.

The experimental data revealed that the frequency decreased for all the plate modes by an average of

3.3 percent. The frequency reduction was the result of a change in stiffness associated with a change in

material properties brought about by the increased temperature. To some degree, the thermal stress asso-

ciated with the temperature gradient across the length of the plate also affected the material properties.

The plate was analytically modeled using two techniques. First, only the change in modulus of elastic-

ity caused by the temperature change was modeled. Then, the change in modulus of elasticity and the ther-

mal stresses caused by the temperature gradient were modeled. The results show that when only the

modulus was modeled, the frequency change was consistently predicted to be less than that measured.

When the thermal stresses were added to the analytical representation, the analysis predicted greater

changes in frequency than were measured. These results were in much better agreement with the

experimental values than those with only the modulus modeled. However, the percent difference between

the results of the two modeling techniques was small.

Transient Heating. Figure 8 compares the analytical and experimental percent frequency change from

room temperature for a transient heating profile. The experimental data were acquired from a test which

consisted of heating the plate to 246 °C (475 °F) in zone 1 at a rate of 3.9 °C/sec (7 °F/sec).
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Theexperimentaldataindicatedthatthefrequencydecreasedfor all theplatemodes.Thepredictive
vibrationanalysisindicatedthatfor this casethedominatecauseof thefrequencyreductionwasthein-
ducedthermalstresses.

Theplatewasagainmodeledfor changesonly inmodulusof elasticityandeffectivestiffnesschanges
causedby thethermalstresses.Thepredictedresultsshowalargedifferencebetweenthetwo modeling
techniques.Theexperimentalresultswerein closeragreementwith theanalysisresultsthatincorporated
themodelingof themodulusandthethermalstresses.Thetemperaturegradientwasmuchlargerthanthat
for thenonuniformheatingprofile andproducedmuchgreaterthermalstresses.Theeffectof notmodel-
ing thesestressesaccountsfor thedifferencesshowninFigure8.Overall,thecorrelationbetweenexper-
imentalandanalyticalresultswasgoodbut notasgoodasthenonuniformheatingcase.

Titanium Plate

Uniform Heating. Figure 9 compares analytical and experimental frequencies for the titanium plate

heated at uniform temperatures to 371 °C (700 °F). The trend shown by the data was that frequency de-

creased as the temperature increased. The average decrease in frequency from room temperature to 371
°C for the first and fourth modes was 9 percent while the average decrease for the second and third modes

was 3 percent. As in the case of the aluminum plate, the change in frequency was solely a function of

changes in the material properties. The experimental data also showed a slight increase in frequency for
the second and third modes from 316 to 371 °C (600 to 700 °F) which was not predicted. The cause of

this effect is not understood.

In general, there was excellent agreement between predicted and measured values of frequency for all

the modes. The disagreement seen at 371 °C is a result of a slight increase in frequency of the experimen-

tal data.

The experimental modal damping estimates as a function of temperature are shown in Figure 10. It is

interesting to note that the damping trend for the first and fourth modes was flat as temperature increased

and the second and third mode damping trends showed a slight decrease.

Transient Heating. Figure 11 compares analytical and experimental percent frequency change from

room temperature for a transient heating profile. The experimental data were acquired from a test in

which the plate was heated in zone 1 to 371 °C (700 °F) at a rate of 3.9 °C/sec (7 °F/sec).

The experimental data indicated a decrease in frequency greater than 10 percent for each mode. Over-

all, there was not good agreement between the experimental and analytical data with the exception of the

first mode. The analytical results consistently under-predicted the frequency change. The analytical re-

suits that incorporated the material property changes and the thermal stress effects agreed the best with

the experimental data. However, the difference between these results and those from the analysis using

only the material property changes was small.

The temperature distribution across the length of the titanium plate was similar to the nonuniform

heating temperature profile for aluminum. The temperature distributions for the aluminum plate nonuni-

form and transient heating profiles compared with the titanium plate transient heating profile are shown

in Figure 3. The largest local temperature gradient was for the aluminum plate transient heating profile
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11.4°C/cm(52 °F/in.). This set of data indicated that the temperature gradient must be large before the

modeling of the thermal stresses becomes important. The temperature gradient for the titanium plate tran-

sient heating profile was in between the transient and nonuniform heating profiles for aluminum. The tem-

perature gradient is not large enough to have a significant effect on the results when the thermal stresses

are modeled in the analysis. The prediction of the effect of the thermal stresses appears to be a weak part

of the analysis.

Fiberglass Plates

Uniform Heating. A comparison of the experimental and predicted frequency values for plate #1 and

plate #2 is shown in Figures 12 and 13, respectively. Each plate was uniformly heated to 177 °C (350 °F),

which was 15.6 °C (28 °F) above the manufacturer's specified glass transition temperature.

The frequency of each mode did not vary significantly below 121 °C (250 °F). Above this temperature,

there was a noticeable decrease in frequency as temperature increased. This data indicated that the glass

transition temperature was between 121 and 149 °C (250 and 300 °F), since it was in this range that the

frequency decreased significantly.

The analytical results also reflect the change in frequency above 121 °C (250 °F). This change is fre-

quency was due to the variation in the modulus with temperature. In the case of the fiberglass plates, the

modulus was experimentally determined and indicated a large decrease in modulus as temperature was in-
creased above 121 °C.

There was a fair comparison between the experimental and analytical data results. The analytical data

came from a plate model using isotropic elements rather than more complex composite elements. This may

have degraded the analytical results. In general, the frequencies were predicted to decrease slightly as the

temperature was increased to 93 °C (200 °F). Above 93 °C, the predicted rate at which frequency changed

increased. The frequency was predicted to remain constant from 149 to 177 °C (300 to 350 °F). This trend

was not unexpected since the experimentally determined modulus of elasticity for this material [10] ex-

hibited a similar trend with temperature. The predicted frequency values were solely a function of the mod-

ulus of elasticity for the uniform heating profile.

The difference in experimental frequency values between plate #1 and plate #2 was primarily due to

the difference in plate thickness, .38 cm vs .48 cm (0.15 in. vs 0.19 in.). The frequency trends as a function

of temperature were similar between the two sets of data. The orientation of the E-glass plies appeared not

to have any effect on the frequency data at elevated temperature conditions.

The experimental damping trends for each plate mode are shown in Figures 14 and 15, respectively.

Above 121 °C (250 °F), the damping for each mode first increased and then decreased as the temperature

was increased. These trends were verified through repeated tests in this temperature range. The damping

increase between 121 and 149 °C (250 and 300 °F) indicated an increase in plate viscosity, which was an-

other indication that the glass transition temperature was between 121 and 149 °C.

The reason for the damping decrease above 149 °C (300 °F) is not known at this time. The material

was fully cured at 191 °C (375 °F); therefore, no post curing should have occurred that would have

changed the material properties. It appears that the material matrix changes above 149 °C, causing the plate
to become less viscous.



Nonuniform Heating. Figure 16 compares the experimental and analytical percent frequency change

from room temperature for plate #1 for a nonuniform heating profile. The plate was heated to 149, 93,

and 38 °C (300, 200, and 100 °F) in zones 3, 2, and 1, respectively.

The data indicated that the predicted change in frequency was more than 10 percent greater than the

experimentally measured values. The inaccuracies of the analytical results are most likely caused by mod-

eling the plate with isotropic FEM elements and not with composite elements.

The data also indicated that there was essentially no difference in the predicted results with only the

material properties modeled or with the material properties and thermal stresses modeled. This was ex-

pected because of the small temperature gradient across the length of the plate.

Transient Heating. A comparison of experimental and analytical modal frequency change from room

temperature for a transient heating profile is shown in Figure 17. The experimental data were acquired

from a test which consisted of heating the plate to 177 °C (350 °F) in zone 1 at a rate of 1.7 °C/sec (3 °F/

sec). Note that the temperature of the plate overshot to 204 °C (400 °F) which was above the curing tem-

perature. The time that the plate was 204 °C was very short, however.

The data comparison was similar to the nonuniform heating profile data. Each mode's frequency

change was predicted to be greater than that which was measured. The effect of modeling the thermal

stresses in addition to the material properties can also be seen in Figure 17. The temperature gradient gen-

erated with the transient heating profile created thermal stresses which when modeled, affect the predict-

ed frequency value. Overall, the experimental and analytical comparison was not good for the same
reason stated for the nonuniform heating profile data comparison.

Plate Data Comparison Summary

Frequency. The STARS analysis code accurately predicted the frequency for the metal plates that

were uniformly heated. The analytical results were less accurate for the fiberglass plates, most likely a

result of modeling the plate with isotropic FEM elements and not composite elements.

The accuracy of the analysis to predict frequency changes caused by nonuniform and transient heating

was less accurate than for the uniform heating for the metal plates. This may have been a result of heating

the plates to temperatures where the material behaved nonlinearly.

The frequency changes were not accurately predicted for the fiberglass plate for either nonuniform or

transient heating. Errors in excess of ten percent were common. This was most likely caused by modeling

the fiberglass plate with isotropic FEM elements instead of composite elements.

Modeling of the thermal stresses caused by temperature gradients was found to be important for gra-

dients larger than approximately 11.4 °C/cm. (52 °F/in.). Modeling of the thermal stresses for local tem-

perature gradients less than this did not have as significant an effect on the predicted frequency values.

Damoing. The experimental damping trends for the metal plates remained fairly fiat for the tempera-

ture range in which the modulus of elasticity varied linearly with temperature. The damping increased as

temperature increased above this range indicating an increase in material viscosity. The damping trend

for the fiberglass plates remained flat for temperatures below the glass transition temperature. Above this
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temperature,thedampingfirst increasedandthendecreased.This resultwasunexpectedandthecauseis
still underinvestigation.

CONCLUDING REMARKS

Analysis codes that predict the aeroelastic and aeroservoelastic stability of proposed hypersonic vehi-

cles at high temperatures must be correlated and validated with experimental data. Hot structure vibration

tests for uniform, nonuniform, and transient heating were conducted on aluminum, titanium, and fiberglass

plates to establish an experimental database for comparison with analytical predictions.

The results have shown that a reduction in stiffness was reflected in each test article by a reduction in

modal frequency. The reduction in stiffness was primarily a function of material property (elastic modu-

lus) changes for uniform heating profiles. A combination of property changes and thermal stresses created

from the temperature gradient across the length of the plate caused the stiffness changes for nonuniform

and transient heating.

Vibration analysis methods accurately predicted frequency changes in the temperature range where the

modulus of elasticity varied linearly with temperature. Analyses results were less accurate beyond this

range.

Thermal stresses created from nonuniform and transient heating profiles must be represented in the fi-

nite element models when large local temperature gradients are present across the structure. Large errors

in the predicted frequency results occur when these stresses are neglected.

Each test article, particularly fiberglass, must have well known material properties at all test tempera-

tures. This information would improve the modeling of each test article.
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16



.O8

.06

Damping, .04
g

.02

Figure 14.

Mode
1
2
3

I I I I
38 93 149 204 °C

(100) (200) (300) (400) (°F)

Temperature
930358

Experimental modal damping estimates for fiberglass plate #1.

.o8

.o6

Damping, .04
g

.02

Figure 15.

-- Mode

2
3
4

I I I I
38 93 149 204 °C

(100) (200) (300) (400) (OF)

Temperature
930359

Experimental modal damping estimates for fiberglass plate #2.

17



Percent
decrease

from room

temperature

20

15

10

0
Mode 1

1

Mode 2 Mode 3 Mode 4

Mode number
930360

1 Experiment
1 Analysis, modulus

change modeled
Analysis, modulus

change and thermal
stresses modeled

Figure 16. Comparison of analytical and experimental frequency changes for a nonuniformly heated fi-

berglass plate (#1).

Percent
decrease

from room

temperature

2O

15

10

5

I 1 Experiment

1 Analysis, modulus change modeled
B Analysis, modulus change and thermal

stresses modeled

I

Mode 1 Mode 2 Mode 3 Mode 4

Mode number
930361

Figure 17. Comparison of analytical and experimental frequency changes for a transiently heated fiber-

glass plate (#1).

18



REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Publicreportingburdenfor this collectionof informationis estimatedtoaverage 1hourper response,indudlngthe time for reviewingtnstruclions,searching existingdata sources,
gatheringand maintainingthe dataneeded, and completing and reviewingthe colle_tonof information.Send comments regardingthis burdenestimateor any otheraspectof this
collection of Information,including suggestions for reducingthisburden,to WashingtonHeadqua_ersServices,Dtrec|oratefor Inlcxrn_ionOperationsand Reports,1215Jefferson
Davis Highway,Suhe 1204. Arlington.VA 222024302, and to the Officeof Managementand Budget,PaperworkReductionProject(0704-0188). Washington.DC 20503.

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I August 1993 NASA Technical Memorandum
4. TITLE AND SUBTITLE

Correlation of Analytical and Experimental Hot Structure Vibration Results

6. AUTHOR(S)

Michael W. Kehoe and Vivian C. Deaton

7.PERFORMINGORGANIZATIONNAME(S)ANDADDRESSEES)

NASA Dryden Flight Research Facility
P.O. Box 273

Edwards, California 93523-0273

9.SPONSORING4_IONOTORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

RTOP 505-63-50

8. PERFORMING ORGANIZATION

REPORT NUMBER

H-1943

10. SPONSORING/MONITORING

AGENCY REPORTNUMBER

NASA TM- 104269

11.SUPPLEMENTARYNOTES

Prepared as a conference paper for the SEM Structural Testing Technology at High Temperatures II Confer-

ence, Ojai, CA, Nov. 8-10, 1993.

12a. DISTRIBUTION/AVAILABI UTY STATEMENT

Unclassified--Unlimited

Subject Category 05

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

High surface temperatures and temperature gradients can affect the vibratory characteristics and sta-

bility of aircraft structures. Aircraft designers are relying more on finite-element model analysis meth-

ods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope.

Analysis codes that predict these thermal effects must be correlated and verified with experimental

data. This paper presents experimental modal data for aluminum, titanium, and fiberglass plates heated

at uniform, nonuniform, and transient heating conditions. These data are compared with vibration anal-

ysis results for the same heating conditions. The data show the effect of heat on each plate's modal char-

acteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal

damping, and the effect of modeling material property changes and thermal stresses on the accuracy of

the analytical results at nonuniform and transient heating conditions.

14.SUBJECTTERMS

Hot structures; Modal analysis; Modal testing; Vibration analysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 For sale by the National Information Service, Springlield, Virginia 22161-2171

15. NUMBER OF PAGES

22

16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std, Z39-18
298-16_




